ExecutionConfig.json UTF-8
{
  "layer_name": "CustomResidual",
  "forward_function_description": "y = x + f(x) where f is a MLP",
  "input_shape": "[batch, d_model]",
  "output_shape": "[batch, d_model]",
  "parameters": ["W1", "b1", "W2", "b2"],
  "activation": "relu",
  "analysis_depth": "standard",
  "include_lyapunov": true,
  "implementation_languages": ["tensorflow.js"]
}
SessionTask UI Live Render
Executive Summary
Intuitive
Formal
Stability
Key Insight

The residual connection allows gradients to flow unimpeded through the identity mapping, mitigating the vanishing gradient problem in deep architectures.

Analogy: Like a bypass valve in a plumbing system that ensures water pressure remains constant even if the main filters are clogged.

Configuration Parameters

Field Type Description
layer_name * String Name of the layer type (e.g., 'Attention', 'BatchNorm').
forward_function_description * String Mathematical or natural language description of the forward pass.
input_shape String Tensor specification (e.g., '[batch, channels, h, w]').
output_shape String Output tensor shape specification.
parameters List<String> List of learnable parameters and their intended shapes.
activation String Activation function (e.g., 'relu', 'sigmoid', 'none').
analysis_depth Enum basic, standard, or comprehensive.
include_lyapunov Boolean Include training stability analysis (Default: true).
include_higher_order Boolean Include Hessian and curvature analysis (Default: true).
include_lipschitz Boolean Include Lipschitz continuity analysis (Default: true).
implementation_languages List<String> Target languages (e.g., 'tensorflow.js', 'python').