TemporalReasoningTask
Analyze system evolution, identify recurring patterns, and predict future states using multi-dimensional timeline analysis and Mermaid visualization.
Category: Reasoning
Model: GPT-4 Preferred
Output: Multi-Tab UI
⚙️ ExecutionConfig.json
{
"subject": "Database Performance Degradation",
"time_range": "2023-Q3 to 2024-Q1",
"granularity": "monthly",
"related_files": ["logs/db-metrics-*.log"],
"analyze_rate_of_change": true,
"predict_future": true,
"prediction_horizon": "3 months"
}
→
👁️ SessionTask UI
Overview
Timeline
Visualization
Predictions
Visualization
## Timeline Visualization
[Mermaid.js Timeline]
2023-10: Index Bloat Detected
2023-12: Write Latency Spike
2024-01: Optimization Patch
2023-12: Write Latency Spike
2024-01: Optimization Patch
Configuration Parameters
| Field | Type | Description |
|---|---|---|
subject * |
String | The subject or system to analyze over time. |
time_range * |
String | Period to examine (e.g., '2023-01-01 to 2024-01-01'). |
granularity |
String | daily, weekly, monthly, quarterly, yearly. Default: weekly. |
input_files |
List<String> | Specific files or patterns (e.g. **/*.kt) to use as input. |
related_files |
List<String> | Glob patterns for logs, metrics, or history files containing temporal data. |
identify_patterns |
Boolean | Find cycles, seasonal trends, or recurring events. Default: true. |
predict_future |
Boolean | Extrapolate trends to predict future states. Default: true. |
prediction_horizon |
String | How far to predict (e.g., '3 months'). Default: 3 months. |
analyze_rate_of_change |
Boolean | Analyze velocity and acceleration of trends. Default: true. |
identify_transitions |
Boolean | Identify critical inflection points. Default: true. |